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NATIONAL-ADVISORY COMMITTEE FOR AERONAUTICS 

ADVANCE RESTRICTED REPORT 

PROPELLERS IN YAW 

c\! By Herbert S, Ribner 
i 

SUMMARY 

It was realized as early as 1909 that a propeller in 
yaw develops a side force like that of a fin.  In ±917, 
R. G-. Harris expressed this force in terms of the torque 
coefficient for the unyawed propeller.  Of several at- 
tempts to express the side force directly in terms of the 
shape of the bladeB,   hovever, none has been completely 
satisfactory.  An analysis that incorporates induction 
effects not adequately covered in previous work and that 
gives good agreement with experiment over a wide range of 
operating conditions is presented herein.  The present 
analysis shows that the fin analogy nay be extended to 
the form of the side-force expression and that the effec- 
tive fin area may be taken as the projected side area of 
the propeller.  The effective aspect ratio is of the 
order of g and the appropriate dynamic pressure is roughly 
that at the propeller disk as segmented by the inflow. 
The variation of the inflow velocity, i"cr a fixed-pitch 
propeller, accounts for most of the variation of side 
force with advance-diameter ratio V/nD. 

The propeller forces due to an angular velocity of 
pitch are also analyzed and are shown to be very small 
for the pitching velocities that may actually be realized 
in maneuvers, with the exception of the spin. 

Further conclusions are:  A dual-rotating propeller 
in yaw develops up to one-third more side force than a 
single-rotating propeller.  A yawed single-rotating 
propeller experiences a pitching moment in addition to 
the side force. Ihe  pitching moment is of the order of 
the moment produced by a force equal to the side force, 
acting at the end of a lever arm equal to the propeller 
radius,  This cross-coupling between pitch and yaw is 
small, but possibly not negligible. 



A  correction to the side force for compressibility 
is included. 

INTRODUCTION 

The effect of power on the stability and control of 
aircraft is becoming of greater importance with increase 
In engine output and propeller solidity.   An  important 
part of this effect Is due to the aerodynamic forces 
experienced by the propeller under any deviation from 
uniform flight parallel to the thrust; axis.   The remaining 
part Is due to the interference between the propeller 
slipstream and the other parts of the airplane structure. 

A number of workers have considered the forces ex- 
perienced by the propeller.   It was pointed out in 19^9 
(reference 1), apparently by Lanchester, that a propeller 
in yaw develops a considerable side force.   The basic 
analysis was published in 19lS by H. G. Harris (reference 2), 
who showed that a pitching moment arises as well.   Glauert 
(references J and Ij.) extended the method to derive the 
other stability derivatives of a propeller. 

Harris and Glauert expressed the forces and moments 
in terms of the thrust and torque coefficients for the 
unyawed propeller, which were presumably to be obtained 
experimentally.   The analyses did not take into account 
certain induction' effects analogous to the downwash as- 
sociated with a finite wing.   It is noteworthy that with 
a. semi empirical factor the Harris equation for side force 
does give good agreement with experiment (see reference 5)• 
Pistoles! (reference 6) in 192C considered the induction 
effects but his treatment was restricted to an Idealized 
particular case.   Klingemann and Weinig (reference 7) 
in 193Ö published an analysis neglecting the induction 
effects; the treatment appears almost identical with the 
account given in 1955 by Glauert in reference ix. 

There have been several notable attempts to express 
the side force directly in terms of the shaoe of the 
blades.   Bairstow (reference 8) presented a detailed 
analysis in 1919 that neglected the induction effects, 
"'isztal (reference 9) published an. investigation in 1932 
that did not have this limitation and that is probably 
the most accurate- up to the present.   Misztal's result, 
however, is in a very complex form from the point of view 
of both practical computation and physical Interpretation; 



there is, in addition, an inaccuracy in the omission of 
the effects of the additional apparent-mass of the air 
disturbed by the sidewash of the slipstream. 

ON 

£j        Very recently rtornph, White, and Grumman (reference 10) 
'    published an analysis that relates the side force directly 

to the plan form in a very simple manner.   Reference 10, 
however, (1) does not include the ordinary inflow in the 
analysis and (2)   applies unsteady-lift theory in an im- 
proper manner to account for the induction effects.   As 
a consequence of (1), the equations are badly in error at 
high slipstream velocities.   As a consequence of (2), 
the equations fail to predict the substantial increase 
in side force that experiment chows is vjrovidod by dual 
rotation.   The improper use of unsteady-lift theory con- 
sisted in using formulas that .apply to the case of a 
finite airfoil with an essentially rectilinear wake«  The 
vortex loons shod by the finite airfoil, vhich produce 
the interference flow, are distributed along this recti- 
linear wake.   The corresponding vortex loops shed by a 
propeller blade in yaw, however, lie along the helical 
path traversed by the blade.   The interference flow is 
quite different from the flow for the case of a recti- 
linear wake.   In fact, it can be shown that the vortex 
loops shed during the unsteady lift aline themselves in 
such a way as to oroduce an inflow antisymmetry.  This 
antisymmetry is one of the two induction effects that 
will be deduced in the present analysis from momentum 
considerations. 

To sum u.r>,   there are available no analyses based on 
the blade shape that are sufficiently accurate over the 
whole range of propeller operating conditions and the 
analysis that is the most accurate is not in a satis- 
factorily simnle form.   P'or this reason a new method of 
analysis is presented that is an attempt at greater 
simplicity and accuracy.   The present analysis shows' 
that the fin analogv may be extended to the form of the 
side-force exores s ion. The e. ffective f1 rea ma y be 
taken as th i.e oroj e s:: Lde ar ea^ of the ;TC pell er and 

lm, 
The projec ted si d e area -" o,  -^Vi e area proj ect ed b the 
blades on a plar Q through the axis of ro t&t Ion. "P Q VS 

one or two i blade C^ thi S l ires v P "fin (C~. C5  i-.-'i *p •"] ii.7. .1 muth 
• ! 

but 
the averag <Ti valu g is of concern here. The ave ra ge 
projected side ar sal. S c xi ven to a close ap :; roxi H'lCl. tion 
by one-hal A- 

t- V, p. rr umbe r of bla: ies times t he ' area p ro- 
.iected bv a s inn •l e bl ad. e on a nl£ne cent O. '    T*". th o 
blade center line and the axis of rotation. 
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the effective aspect ratio is of the order of 8.   This 
equivalent fin area may, with small error, be regarded 
as situated in the inflow at the propeller disk and 
subject to the corresponding augmented dynamic pressure. 
The variation with v/nD of the dynamic pressure at the 
propeller disk, for a fixed-pitch propeller, therefore 
accounts for most of the variation of side force with 
V/nD. 

SYMBOLS 

The  formulas  of the present  report  refer to  a system 
of body axes.       For single-rotating propellers,   the  origin 
is   at  the  intersection of  the  axis  of rotation and the 
plane  of rotation;   for dual-rotating propellers,   the 
origin is  on the  axis  of rotation halfway between the 
planes   of rotation  of  the  front  and  rear propellers.      The 
X-axis  is  coincident with  the  axis   of rotation  and directed 
forward;   the Y-axis i3  directed to the  right  and the 
Z-axis  is  directed downward.        The   symbols   are  defined  as. 
follows: 

D propeller diameter 

Sf disk area     yrD /It) 

S wing  area 

R tip radius 

r radius   to  any blade  element 

r„ minimum radius   at  which  shank  blade  sections 
develop  lift   (Taken  as  0.2R) 

o 

x fraction of tip radius  (r/R) 

xQ value of x corresponding to rQ "-_ ; 'r0/R) 

x ratio of spinner radius to tip radius 

B number of blades 

b blade section chord 

c wing reference chord 



H 
OJ 

I 
H3 

M- 

a'   = El 

relative  blade   section  chord 
Jo.75R 

or 
b/D 

(b/D)n 7r; o ,R 

V 

a 

n 

V a 

v. 

V 

f(a) 

f-^a) 

n 

J 

ß 

^/o.75R 

solidity  at O.75R L^ 
.5* 

free-stream velocity 

X   r 7' 
speed of sound in free stream? 

inflow factor in appendix 3, 

normal acceleration 

acceleration of gravity 

>"1 axisl   velocity  at  propeller disk     jV(l   +   a)j 

velocity  component  in direction of decreasing 9 
oi:  relative  wind  at  blade  element   (2rmr  -   slip- 
stream  rotational   velocity) 

slipstream  velocity  far behind  propeller   (In 
practice,  1  diam.   or nore)      [V(l  +  2a)~j 

free-stream dynamic  pressure    / — p'/M ;   also,   angular 
V2   / 

velocity   of pitching 

function defined  in equation  (1) 

function  defined  in   equation   (2) 
(1  +  a)   +   (1  +  2a)2"| q-fsctor       j (1   +   a) 

I 1  +   (1  +  2a)^ 

:(1  +  2a)' 

1 + (1 + 2a) ^ 

revolutions per second 

advance-Giametor ratio  (v/nD) 

blade anrle to reference chord 



ß blade  angle  to  zero-lift  chord o c 

6 angle of blade  relative   to Y-axis measured in 
direction  of rotation 

0 effective helix angle including inflow and 

rotation       tan J- — ) \        V 
ty angle  of yaw,  radians 

a effective   angle of attack of blade  element   (ß    - p') 
c angle  of sidewash in  slipstream far behind propeller 

eT nominal induced  angle  of  sidewash at propeller 
disk 

7' effective  average induced angle  of  sidewash at 
propeller disk 

v sidewash velocity far behind propeller 

C airplane  lift coefficient 

c blade   section lift  coefficient 

c, blade   section profile-drag  coefficient 
o 

c7 slope  of  blade  section lift  curve,  per  radian 
a (do,/da* average value taken as 0-95 * 2TT) 

dF    force component en a blade element in direction 
of decreasing  9  (See fig. 1.) 

T thrust 

m 
J'c 

thrust coefficient (T/PV
2
D
2
) 

CT thrus t coefficient (T/Pü
2
^) 

Q torque 

Q ^c torque coefficient (•4/^2D5) 

W weight of airplane 

X,Y,Z forces directed along positive directions of X-, 
Y-, and Z-axes, respectively 
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LJMJN    moments   about  X-,  Y-,   and  Z-axes,   respectively, 
in  sense  of  right-handed screw;   in  appendix B 
and  figure  9*   -T    refers  to  the  free-stream "ach 

es nuir.be r 
rH 
OJ 

'    Me    effective Mach number for propeller side force 
(See appendix 3.) 

Af, B', Cr, D'   functions defined in equations (h) 

a', b', c', d!   integrals defined by equations (21) and 
(?0) 

b-p bp     integrals  defined by   equations   (Jl) and   (J2) 

In side-area index defined  by equation   (I4.I) (-.—•  a' 
M- 

I     integral defined by equation (42)    \j—  b1 

I     integral defined by equation UjJ)    p— d! 

A'    defined by equation (21;} (Zero for dual-rotating 
pronellerc) 

A     defined by equation (LIJL)   (Zero for dual-rotating 
propellers) 

m defined by equation (L-5) 

k-, correction factor defined by equation (jij.) 

ka sidewash factor defined by equation (3;>) 

k spinner factor defined by equation (Jo) 

K constant in equation for k0 

Cy' side-.force coefficient 

C '    oi tching~r.:.oment coefficient 
m * ° 

C,r
v side-force  derivative  with  respect  to yaw   föC   '/ö^ 

Y y], * N    Y '     / 



V Ur 

V 

•oitching-moment  derivative  with respect  to yaw 

side-force  derivative   with respect   to Ditching 

Cm\ pitching-moment derivative  with respect  to 

pitching 

"O 

V2V/ 
projected side area of propeller (See footnote 1.) 

A      aspect ratio 

Subscripts: 

O.75P      measured  at O.75R station  (x = O.75) 

c divided  by     fNZVd    if  a  force,   by     pV2D* if a moment; 
designates  quantities  corrected  for   compres- 
sibility  in  appendix B  and figure 9 

e 

k 

effective 

index that takes the values 1 to B to designate 
a particular propeller blade 

max    maximum 

stall   at stall 

A bar over a symbol denotes effective average value. 

ANALYSIS 

Propeller in Steady Axial Plight 

The section shown in figure 1 is part of a right- 
hand propeller blade moving to the right and advancing 
upward.   The components of the relative wind are V„ 
and VQ,  where  V„  is the axial velocity including the 
inflow and VQ  is the rotational velocity including the 
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04 

slipstream rotation.        The  force   component  in  the  direc- 
tion of decreasing     8    is: 

dP = dL  sin $ + dD cos Oi 

* = fva
2b dr 

= k2bdr ff, (j*)] (1) 

n    ~         /'c7   sin (/ + CJ    cos On 
= |Va2b d,   _i        AQ  

2  a L 1     ... 

and  the   contribution to  the   thrust  is 

dT = dL  cos r/ -  dD sin fl 

"" 2iv°'cri -   si~2 j-       y 
r 

- £„ 2,. ^/•bflrj^t^^l -f2) 

The equat° ons may be div'.ded by  fV^D1- .to reduce 
the terms to nondimenslonal form.   Inasmuch as  V„=V(I+a), 
there results 

o 

whe re 

d?c =1L^-Sl-| fx(^)dx 

dT, = r — - t.f^jdx 
4     D  -1- 

dp 
dP 

and 

C " PV2!)2 

d T 

~ °   PV2D2 

r 
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Propeller under Altered Plight Conditions 

Force components on blade element.- In equations (1) 
and (2) for  dP  and dT,  Va  occurs explicitly in the 
factor V^     and implicitly in 0    and in terms depending 

on 0;   VQ  occurs only implicitly in 0    and in terms 
-1 V 

deoending on 0-- .   The relationship is 0 =  tan~ —&, 
v6 

which can be seen in figure 1.   By partial differentia- 
tion, therefore, the increments in dP and dT due to 
any small changes whatsoever in VQ  and V 
fixed blade angle, e a 

e 

6(dF) 

dv a 

6(_dF) £<0 
60     ÖV 

ire 

dV 

for 

a 
a 

and a similar expression for  ö(dT).   The substitution 
of equations (1) and (2) gives, when put in nondimensional 
form, 

5(dPc) = 
(1 + a) 

k 

2 b 
- dx 
D 

dV, 
6<0 

9 ÖV„ 

of, 

5(dTc) 
_ (1+ ap b 

k D dx dV, 
6(0 

e öV9 

dt. 
+ dV, 

i >(5) 

The following abbreviations  are helpful: 

Al 
Va 

3' 

~a 

C± 
v ' a 

D1 

of. 6g_ 
ÖVQ   60 e 
2f, of, 

V a 

60  
öva   60 

V a 

M-  = 

" övQ 

Va 

/b\ 
D// 

(h) 

6(0 dt 

ÖV 
1 

0.75R V 
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where  f,  and t   are defined in equations (1) and (2), 

respectively.   Equations (3) become 

4 
|- A'    + B'       ji-dx 
W \        V_ V 

*   0.75R   \ 

5(dTc)   = 
(1   +   a) 

k '& 
C 

V 'O..75R.  \       "a 

where  all   the  factors   are  nondiinensional 

-N 

\ 
/(5) 

9               ^va  . 
+ D< U:dx 

Va. 
J 

Forces   and moments_ experienced by complete  propeller. - 
Equations   (5)   give   the  component-force  increments  due   to 
altered flight  conditions   on   an element   of  a single blade, divided 

p  ? by     pV D  .        The   force  and moment  increments   experienced 
by  the   complete  propeller  of     3    blades,   with  respect  to 
the  body  axes   shown in figure  2,   may be  written  as 

Forces: 

k=l "ro 
k (6) 

Y  = 

Z  = 

>_    /     5(dF)ksin   9k 

k=l      -1 o 

k=3       „R 

M "x'o 
o(dF),    cos- 8. 

k i 

(7) 

(6) 

Moments: 

K=3 

L   -   (-§) r5(dF),, 

M   = 

k=l " 1 o 

/        y      rö(d'T)k-  sin  8 
k^l "To 

k 

(9) 

(10) 
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k^L^o 
N = - 3> y rö(dT)k cos 8k      (11) 

where the subscript k refers to the kth propeller 
blade.   In order to obtain the nondimensional form X, 
Y,   Z, and T are divided by  PV2D2  to give XQ, Yc, Zc, 

and T_ and L, M, N, and Q are divided by  pV2D^ to c 
give L , M , N , and Q .   In the equations (6) to (11), c  c  c      c 

5(dF)k becomes 6(dP0). , 6(dT)   becomes 5(dTc) , and 

r becomes •- = —.  The limits of integration become 

x to 1, v/here x = ~~. o    '        o   R 

Stability derivatives of "propeller.- The analysis 
up to this point has been of a general nature in that the 
formulas are applicable, for a fixed-pitch propeller, to 
any type of deviation from steady axial advance - that 
is, the formulas may be used to calculate all the stability 
derivatives of a fixed-pitch propeller.   In addition, the 
formulas are applicable to those stability derivatives of 
a constantrspeed propeller that are not associated with 
changes in blade angle.   This restriction could be re- 
moved, however, by extending the analysis at the outset 
to include a term in dß0. 

A  particular stability derivative can be obtained 
by determining and substituting in equations (5) the 
values of dVQ /va and dVa/Va appropriate to the 
motion under consideration.  For dual-rotating propellers 
equations (5) must beset up independently for both propeller 
sections with signs appropriate to the respective direc- 
tions of rotation.   Values of dVg/Va and dVa/Va that 
are average for both sections are used for each section. 
Note that dVQ  is the change in the component of the 
effective relative wind acting on a blade in its plane 
of rotation and dVg  must therefore include the effect 
of any changes induced by the motion in the rotational 
speed of the propeller relative to the airplane. 
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The possible unaccelerated motions of a propeller 
comprise flight (1) at a steady angle of yaw, (2) at a 
steady angle of pitch, (3) with an angular velocity of 
yaw, (Ij.) with an angular velocity of pitch, (5) with an 

!H     angular velocity of roll, (6) with an increment in for- 
^    ward speed, and any combination of these.   It is clear 
^ from the symmetry of the propeller that motions (1) and 

(2) are similar and motions (3) and (It) are similar. 
Accordingly, of the six possible deviations of a pro- 
peller from a given mode of steady axial advance, only 
four are distinct.   These four may be taken as angle 
of yaw ty, angular velocity of pitch q, angular veloc- 
ity of roll, and increment in forward velocity. 

Glauert has shown in reference 3 that neither yawed 
flight nor flight with an angular velocity of pitch, 
when these disturbances are small, changes the torque on 
the propeller.   Accordingly, neither mode will tend to 
change the rotational velocity, and derivatives with re- 
spect to yaw or angular velocity of pitch are independent 
of the rate of change of engine torque with engine revolu- 
tions.   Furthermore, results for these derivatives ob- 
tained for a fixed-pitch propeller are equally applicable 
4_- a constant-speed propeller because the constant-speed 

chanism is not brought into operation. 
to 
me 

Both angular velocity of roll and increment in for- 
ward velocity clearly affect the torque of the propeller. 
The engine will attempt to alter its revolutions to attain 
an equilibrium value.   If the propeller has fixed pitch, 
the adjustment will take place and its amount will depend 
upon the law of variation of engine torque with engine 
revoltitions for the particular engine used.   (See refer- 
ence 3.)   If the propeller is of the constant-speed type, 
the pitch-change mechanism will attempt to alter the blade 
pitch; the resulting change in aerodynamic torque opposes 
the change in revolutions.   The fluctuations in rotational 
speed and the associated variations in aerodynamic torque 
and thrust of the propeller are then functionally related 
to the law of control of the pitch-change mechanism and 
the dynamics of its operation.   (See reference 11.) 

The present report will be limited to a study of the 
effects of yaw and of angular velocity of pitch.   In the 
following sections  dVfl/V  and dVa/Va  are evaluated 
for yawed motion. 
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Propeller in Yaw 

Batio dVn/Va  for yawed motion.- The increment dVg 

is the component parallel to Vg  of a side-wind velocity 
computed as follows:  The velocity Va  is regarded by 
analogy with wing theory as passing through the propeller 
disk at an angle  \|/ - e'  to the axis, where \|/  is the 
angle of yaw and  c' . ma;/ be termed the "induced sidewash 
angle" (fig. 2). . The. side-wind velocity, for small 
values of both  \|/ and  €«,  is accordingly Va(\J/ - C). 

The sidewash arises from the cross-wind forces. 
These forces are the cross-wind component of the thrust 
T sin ij/ and of the side, force known to be produced by 
yaw Y cos \J/.   (See fig. 3«)   The analysis is restricted 
to small \|/; these comoonents are then approximately Til 
and Y. 

If the sidewash velocity far behind the propeller 
is  vv,  the induced sidewash at the propeller may be 
taken as  v /2 by analogy with the relation between the 

Y 
induced downwash at a finite wing and the downwash far 
behind the wing.   Note that 1 diameter may be considered 
"far" behind the propeller as regards the axial slip- 
stream velocity; 95 percent of the final inflow velocity 
is attained at, this distance. 

As a first anproximation, thrust and side force are 
assumed to be uniformly distributed over the propeller 
disk; corrections due to the actual distributions are 
investigated in appendix A.   Under this assumption the 
momenturn theory, supported qualitatively by vortex con- 
siderations, shows "that the slipstream is deflected side- 
wise as a rigid cylinder.   The sidewise motion induces 
a flow of air around the slipstream as in figure I)..   The 
transverse momentum of this.flow is, according to Munk 
(reference 12), equal to the transverse momentum of an- 
other cylinder'of air having the same diameter as the 
slipstream at all points and moving sidewise with the 
same velocity as the slipstream boundary.   Note that the 
air within the slipstream has a greater sidewise com- 
ponent of velocity than does the slipstream boundary. 
Far back of the propeller the ratio is —^ =  1 + 2a. 

V 
The time rate of change of the transverse momentum of 
the air flowing at free-stream velocity through this 
second cylinder should be included in setting up the 
momentum relations for the sidewash. 
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By equating the  cross-rind force  to  the   total  time 
rate  of change   of momentum, 

T\|/ + v :V, 
nD 

to the first order in ty,     where the first term on the 
right is the contribution of the slipstream and the 
second term is the contribution of the air displaced by 
the slipstream.   On dividing by  pV D^  and using the 
relations  VQ = V(l + a)  and  V =V(1 + 2a), 

V-r/2 

a 

(Tc\l/ + YCJ 

(1 + a)2 il + 
(1 + 2a)' 

(12) 

where  c  is the induced angle of sidewash at the pro- 
peller.   Glauert (reference h)   deduces almost twice this 
value at small values of  a. by neglecting the reaction 
of the air displaced by the slipstream. 

It was shown earlier that the effective side wind 
in the plane of the propeller is V (">J/ - *')  and dVq 
is .the-component parallel to VQ j that is, 

dVe = Va(^ - e') sin 6 (13) 

The value of e»  from equation (12) may be introduced 

and the relation ^ T„ = a(l + a), from simple momentum 
theory, may be used to eliminate  Tc.   There results 

dVo       f Y " 

a . 1 +~JW     m*) 

where 

f(a) (1   +   a)    1(1   +   a)   +   (1   + 2a)2] 
1   +   (1   +  2a)2 

(li+) 
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and 

t  (a)   =-2(l+2">2 (15) 
1 1  +   (1  + 2ap 

Ratio  dVa/Va    for yawed motion.-   As     Va = V(l  +  a) 

for liny awed motion,   the   changes  produced by yaw  are 

dva       dV da    ..-     da 
V        1  +  a       1  +  a ^D; VQ V        1  +  a       1  + • a 

a. 

2 
if  dV/V,  which is -cos \|/ - 1 -^ ^—,  is neglected as 
being of the second order in ty. 

In order to evaluate  da,  figure 2 is first con- 
sidered.   The component of the effective side wind in 
the direction opposite to the blade rotation is 
dVg = va(^ ~ e'^ s^-n ®*  This component acts to increase 
the relative wind at the blade, and therefore the thrust, 
in quadrants 1 and 2; it acts to decrease the relative 
wind, and therefore the thrust, in quadrants 3 and h- 
Fore exactly, the change in thrust due to the side wind 
is distributed slnusoidally in  9 .   It is clear that 
this incremental thrust distribution by its antisymmetry 
produces a pitching moment. 

Momentum considerations require an increase in in~ 
flow in quadrants 1 and 2, where the thrust is increased, 
and a decrease in inflow in quadrants 5 an(^ h»   where the 
thrust is decreased.   The variation should be sinusoidal 
in  9,  and the assumption that the variation is directly 
proportional to the radius is sufficiently accurate for 
computing the effect on the side force.   Such a represen- 
tation is illustrated in figure 5*   T^-e analytical ex- 
pression is 

dv = Vda 

= kr sin 8 (1?) 

where  k is a constant to be determined.   Applying the 
momentum theory to evaluate the pitching moment M in 
terms of the inflow modifications produced by the pitching 
moment gives 



17 

o\ 
H 
CvJ 

I 

M =   /      /      PV r d9   dr r  sin 6 (2 dv) 
J o  i/o 

By substitution  of  the  relation  for    dv, 

.P   ~2rr 
M = 2k PV„    /     /      r^   sin29   d6vdr 2k pva   /    /      r*   sin29 

^o i/o 

Up on int egration, 

l6VM 

(1  +  a)rrR 

where 

¥ 
-c 2  5 

7J   TV PV  D- 

but,   by  equations   (lo)   and   (17)> 

dV a da 

1  +  a 

kr  sin 8 / 
~/(l  + 

V      / 
(1  +  a) 

or 

dVa       loMcx    sin 6 

(1  +  a)z  IT 
(18) 

where 

R 

Summation over  blade  index k.-   The   component-velocity 
Increments  due  to yaw have  been obtained in the preceding two 
sections   as 

dVg 

(1   +   a)^ 

Y, 
f(a)   -  fx(a)   -f sin  9, (13a) 

k ^ 
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(18) 

where the subscript k has been added to refer to con- 
ditions at the k'th propeller blade. These values of 
dV /Va and dVa/Va may be substituted in equations (5) 

to yield values of 5(dP_) and 6(dT„). The values of 
6(dFc) and 6(dTc) thus found may be inserted in equa- 

tions (6) to (11), which give the several forces and mo- 
ments the propeller might conceivably experience. 

The summations over k indicated in equations (6) 
to (11) affect only the factors involving  sin 9k  and 
cos 9v«  The several factors are, upon evaluation, 

k=3 

^>  sin ek = y     sin 6T cos 9k = 0 

1FI     "*  k=T 

If  B ^ 3, 

k=3 

J 
\- •1 

• 2 o    B sin* 6V = - 

2.  or 1, 

k=T 

->     B, 
sin*- 8k = r(l - cos dQ   ) 

but the average over  8 is  B/2. 

The nonvanishing factor T\~ sin* 8-,, occurs only 

in equation (7) for the side forceY and inequation (10) 
for tee pitching moment  F.   The other hypothetical forces 
and moments that might be produced by yaw are, accordingly., 
all zero. 
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When the relation 

>" sin2 9, / 
k=l 

B 
2 

is used, equations (7) and (10) become in nondimensional 
f orm 

•c   8 ID do.• /ir(a) '   " fl(S) ^H^ ^'T 
2M. B 

o    8 

dx    (19) 

I)      r\\*(*)* - Va) irc' + T^^r ,D/0.75Rvx...   L. i "J >—o  £ 
^xdx     (20) 

For  simplicity  the  following  additional  abbreviations 
ire introduced: 

a'   = 3 
VD/0.75R 

a'   = -   /     jiA»   dx 

b'   = ~    /    ix(-B')x   dx 
y        (21) 

o'   = -    /     jiG'x   dx 
x 

r> 1 

xo 

~\   f   P.(-D')x2   dx 
y 

where   the   signs have  been chosen to make     a',  b',   c', 
and d'     positive  quantities. 
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Solution for    Y.     and    M       for  single-rotating o c 
propellers.- with the prec"edTng~substltutions,   equations 
(19)   and   (20)   become 

2M 

_ TTCj_  [ r = 8 il f(a)\|/ -  f, (a) 
TT 

a'   - — M„b» 
TT        ° 

(22) 

8   <[f(a)*-  fx(a)  -£ 16 « *,i c»   - — M„d' 
TT        c 

These  are   simultaneous  linear  algebraic  equations 

c     and    V 
simplification, 

in    Y_     and    T"r The  solution for    Y_     is,   after 

f(a)o-,    /a,   -     <"*'*') 
_ TT,  __ \ 1  +  o'd'/ 

c      8V n             fT(a) 
1  +   a»  —i  

8 
/,   .     Cb'ojJ 
\_ 1  +  a'dy 

which may be written in the  form 

v    = TT '   f(a)   o'a' 
8* " a' 

a«   -  A1 
+ £ii±l 

8 
o'a' 

where 

A'   = 
o'b'c' 

1 + a'df 

(23) 

Uk) 

Numerical evaluation shows that the denominator of equa- 
tion (23) does not differ greatly from unity; therefore, 
Y_     is  roughly proportional   to     a'. 

Similarly,   the  solution for    M       is 

Mc  = 2^7 
f(a)   cr'cf 

8 +   a'   f  (a)   a' (1 +  a'd')   -  a'   fx(a)   b'c' 
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which may  be  put in  the  form 

tr f(a)   m      
{ % ~ p TJT) (25) 
i I  + -r,— a'(a'   -  A') 8 

where 
a' o ' 

m =   —  (26) 
2(1 +  a'd') 

The  relative  magnitudes   of  the   quantities   are   such that 
M_     is  roughly prooortionai   to     c'. 

Rolut'on  for    Y       and    M      for dual-rotating oro- j c c -  
pellers.- The foregoing equations apply only to single- 
rotating propellers.   With dual-rotating propellers the 
asymmetry of the disk loading, which for a single- 
rotating propeller produces the pitching moment due to 
jaw, is oppositely disposed over the front and rear sec- 
tion?..   The resultant ever-all disk loading, therefore, 
•* s almost symmetrical and gives rise to a negligible 
itching moment - that is, 

i 
Pi 

Mc * 0 •  (27) 

The induction effects associated with the respective 
disk-loading asymmetries of the front and rear propeller 
sections very nearly cancel even though there is a finite 
separation between the two sections.   This fact, which 
may be regarded as a consequence of the relation (27), 
is represented by putting ¥    = 0  in equation (22). 
The re suit.,is 

v  _ It' f<a> q'a'  
-c  6V   l  , x (28) 

1 + ~ f. a) a'a' 
8 1 

This equation differs from equation (23), which 
applies to single rotation, in that unity replaces the 

larger quantltv  '•  in the denominator.   The 
a'   -  A' 

side-force  coefficient    yo     is   therefore  larger in  the 
case  of dual   rotation.        With data for  conventional 

/ 
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•propellers, the increase averages about l8 percent and 
reaches 32 percent at low blade angles. 

The increase in side force is due to the lack in the 
dual-rotating propeller of the asymmetric distribution 
of inflov; velocity across the disk which, for the single- 
rotating propeller, is induced by the asymmetric disk 
loading.   The inflow asymmetry is so disposed as to reduce 
the change in angle of attack due to yaw on all blade 
elements.   The behavior is analogous to that of downwash 
in reducing the effective angle of attack of a finite 
wing. 

The inflow asymmetry is not the only effect analogous 
to downwash in wing theory: the sidewash of the inflow is 
another such effect and serves to reduce the side force 
still further.   Sidewash is, however, common to single- 
and dual-rotating propellers and affects both in the same 
way.   An examination of the steps in the derivation shows 

"' ' ' a'a'  in the denominator, the that the term 
8 

absence of which 
to the sidewash. 

fx(a) 

would increase   the  value   of    Y, is due 

Equations (23) to (28) give the stability derivatives 
of single.- and dual-rotating propellers with respect to 
yaw, but the results are not yet in final form.   There 
remain the evaluation of  a', b', c', and d'  and the 
introduction of a factor to account for the effect of a 
spinner and another factor to correct for the assumption 
of uniform loading of the side force over the propeller 
disk. 

Explicit representation of  a', b', c', and d'.- 
Equations (21) show  a', b', c', and d'  to be integrals 
involving the functions  A', 3', C, and D' ,  respectively, 
which are defined in equations (L.) in conjunction with 
equations (1) and (2).   The quantities 
D'  are, upon evaluation, 

C', and 

A' = c   sin 0  + c  cos 0 (29) 
a 

3' = - c  cos 0 -  c  (sin fi +  esc j#) 
la l 
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C = c7  cos 0  - c  (sin 0-2.  esc 0) 
La l 

f       cos2 0 
D' = - c   T~  - c  cos 0 

^ Wa sin ^     i 

if terms in the coefficient of profile drag  c.   are 
o 

neglected as being small in comparison with the terms 
in  c. .   The neglect of  c,  is valid only for values 

'a ao 
of 0    not too near 0° or 90°. 

From figure 1,  ß = 0  + a.   Then, 'for a in the 
unstailed range, 

sin ßQ = sin 0-  cos a + sin a cos 0 

~  sin 0  + a cos 0 

and 

c,  sin ß ~ c7  sin 0 +  c   a cos 0 
Ja la la [ 

= c   sin 0 +  c     cos 0 ^ ' 
b b a 

the right-hand member of whi ch is just  A'  in equation (29) 
This relation provides the important-result that, although 
both 0    and  c  depend on the inflow, the slipstream 
rotation, and the value of V/nD, the function  A'  is 
independent of these quantities .and .depends solely on the 
geometrical blade angle  ß .   This relationship leads 
directly to the interpretation, to be established presently, 
that the effective fin area of a.propeller is essentially 
the projected side area. 

The ..introduction of  ß  does not succeed in similarly' 
eliminating 0>     and c7  from B', C', and D' but does 
result in a simplification in  E' and C.   The summarized 
results are, to the first order in a,  with D'  left 
unchanged; 
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.4'   = ciz     sin  ßQ 
a 

3*   = -jc7      COS   ß     -   C      CSC  0j 

C   = c       cos   ß    + 2c7   esc 0 
a 

r, t   = 

-('.. 

cos^fff 
sin 0      ~l 

o    cos 0] 

The  integrals   (21),   in which    A',   B',   Cf,   and B' 
occur, must  now be  evaluated.       Upon substitution, 

,1 

a'   = a 
TT 

x. 

b'  = 
a 

IT 

[i sin  ßQdx 

(i,X   COS    ßndX   - 
TT 

[ixc    esc 0  dx 

x. 

la   / 2   /' 
c'   =    /    {ix cos   ßQ dx + fr /    I1*0     csc /^' ^x 

x. o 

d' a 
TT 

t&X   _ cos^ -0 
sin 0 

dx a 

)     (30) 

TT 
jix^a  cos 0 dx 

x, A. J 

where 

H 
0.75R 

and    b    is  the  blade  width. 

Evaluation, of ' a' ,   b? ,   and c ' .- The  integral     a? 

is  already in its   simplest  form in equations   (30),   as  is 
the  first  integral   of    b',     which is  identical  with the 
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first integral  of     c'.        If  the  first   integral  of    b' 
is  defined  as     b, , 

whe re 

b'  = b,   - b, 

c'   = b.,   + 2b, 
2 

1 
i 

b-,   = -—' 
1 TT 

.1 
\ix cos   ß dx 

'X 

i r1 
bp  - —   /    LIXC,   esc 0  dx 

^o 

(5D 

(32) 

In the  attempt to evaluate    b      it was  found that, 

if  the blade  section coefficient of profile  drag  and the 
rotation of  the  slipstream are neglected,   the  thrust 
coefficient  is 

T 

PV2D2 

P       (1   +   a)    TrO' 

il.J 
(xxc     csc 0 dx 

where 

nD 

If  an  average, value  of    1  +  a     over  the  disk is  used, 
1  +  a    can be  taken from under the integral   sign,   and 

.T lil' 
b     - •        x  

d       o'   IT
2
   (i  +  a) 

But,  by the   simple momentum theory, 

2 
TT  T    =  a(l +   a) 
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Therefore, 
•J   2a 

2       a'    rr 

A graph of   the   variation of    2a/rr    with    T       is  given in 
figure  6. 

Approximate   evaluation  of     d'.-   The  contribution  of 

d'= —/ ^x ^r/dx - —J ^2^^B 0 dx 
x~ v o ^-o 

to Y_  is small.   It is found, by using the largest 
value which a may have without causing stalling of 
the blades (about i/i| radian), that the second integral 
can be neglected, with the result that 

" J        p  sin 0 
*o 

Note  that    0     involves   the inflow velocity  and  the  slip- 
stream, rotational   velocity.       These  velocities,   if  assumed 
to be  constant  over  the  propeller disk,  may easily be 
related to     T_     and    Q„,     respectively,   from momentum 
considerations. 

Curves of d'   have been computed for a  typical plan form 
(Hamilton-Standard propeller ~3155-6)   and  are  presented 
in figure  "J.       This  chart makes  use   of  an  altered notation 
introduced later in the  report;   the  ordinate  is   the 
quantity 

"J        k 

and  a parameter is  the   solidity  at 0.75^> 

kB /b1 

3TT   [DJ 
0.75R 
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The abscissa is  v/nD.   The error in computed side force 
due to using this chart for plan forms other than the 
Hamilton-Standard J155-6 should be negligible.   The 
chart is not sufficiently accurate, however, for precise 
computation of the pitching moment due to yaw. 

Correction for nonuniform distribution of side force.- 
The induce 
foregoing 
and the si 
the propel 
sidewash d 
tribution 
the assump 
appreciabl 
side force 

d sidewash angle e 
is based on the as sump 
de force are each unif 
ler disk. The error 
ue to the assumption 0 
can be shown to be sma 
tion of uniform side-f 
e. The effect of thi 
is small, but not neg 

as calculated in the 
tions that the thrust 
ormly distributed over 
in effective average 
f uniform thrust dis- 
11; the error due to 
orce distribution is 
s error on the computed 
ligible. 

The side force is actually distributed over the 
propeller disk nearly as the product of the integrand 

important term in the side-force expression a' 
The integrand of  a'  is proportional to the 

times the sine of the blade angle, which 
greatest toward the blade roots due to the 
sin^ 9 has  maxi mums at G = 90° and 270°. 

concentrated near the blade 
axis.   In calculating an effective 

e'  due to the side force, this 
taken into account by 
a',  which is  ^ sin ß, 

times  sin^ 9   as a weight factor.   The detailed treat- 
ment is given in appendix A.       There is obtained for the 
effective average of the induced sidewash angle 

of the, most 
and sin2 6. 
blade width 
tends to be 
twist, and 

s - 
roots and along the  Z- 
average of the part of 
distribution of the side force is 
using in effect the integrand of 

%  (Tc* + kjYc) 

(1 + a) 
2 1 + 

(1 + 2a)2 

(33) 

where 

(li sin ßpf 

(3U) 
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is a correction factor derived in appendix A.       If e ' 
is inserted for  e'  in the analysis for side force and 
pitching moment, the corrected forms of equations (23) 
and (25) are, respectively, 

c 
y  = H^   f(a)q'a' 

8 —^  + w<a' 
aT - A' 

„it _ ^ .     f (a) m 

8 1 + ka a! ( a' - A ?) 

where  the  abbreviation 

0 1 

/   lüJifiWf dx 
«f/a)—2. 2E_  (55) 

has been used.       The factor    ka    may be  called the  side- 
wash factor. 

Correction for  augment!ve   effect  of  spinner.-   If  the 
spinner-nacelle  or  spinner-fuselage combination has   a 
fairly large   fineness   ratio,   the  circumferential   component 
of the  side wind is  speeded up  in passing  around  the  blade 
shanks   (fig.   8)  by approximately  the factor 

1 + (f 
where 

*s 
spinner radius 

R 

constant (1 for fineness ratio «; O.9O for fine- 
ness ratio 6) 
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This local increase in side wind is equivalent to an in- 
crease in the angle of yaw \l/ in the same ratio. Thus 
at   radius     xR    the   effective   angle   is 

x|/e(x)   = if 1   +  K 

The  effective   average yav;  over  the  disk    \j/e     is  obtained 
from the   consideration  that     dY„     is  nearly proportional 

to   the  integrand     u  sin   0    of  the  dominant  term    a'. 
Approximately,   therefore, 

Yn  = kM/ |x sin  0odx 

p. sin   ßndx 

where    k    is  a  constant.      According!?, 

1   '+ 
••/ X 

a sin  ßcdx 

nx 

t/ 
/ • '      a  si n  ßGdx 

(36) 

According  to   this  result,   if the  propeller is 
equipped with a  spinner,   the previously given  expressions 
for  side   force  and pitching moment  should be  multiplied 
by   the   constant     k   ,     which may be   termed the   "spinner 
factor.:|       The  value  of    k       is  of  the   order  of l.lli  and 
varies  slightly with  blade  angle. 

New definitions ."t  j.s worth while   to  introduce 
certain now definitions  at   this  point  to  put   the   final 
equations   in better  form.        The  original   definitions were 
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chosen solely with a view toward clarity in presenting 
the derivation,   The principal change is the replacement 
of 

ÖL a'  = 3 
75R 

which is  proportional   to  the   solidity  at  0.75-R»   by  the 
actual   solidity  at O.75R 

3TT 

(5) Wo. 75p 
(57) 

75R 

This  change  entails  replacing  all   the   integrals   occurring 
in the  equation by    Jtr/lj.    times   the   former  values.       Thus 
a'     is   replaced by     I   ,  b-,     by  I   ,   d'   by  I   ,   and A'   by A, 

1-L2 j 
where 

~2        it    °1 

A = n~ A' 

In  addition,   the following definitions   are intro- 
duced: 

/"•     1 r= 
V 

'-'v qS' 

- 
d 
—   V 
TT    "C 

= 

ÖCy» 
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n     t 

qDS' 

IT   -C 

Cm', ~    of 
where   the Dropeller disk area 

S< TTD2 

The   symbols     Cv'     and    0^'     have been  so  chosen in rela- 

tion  to  the  conventional   side-force   and pitching-mornent 
coefficients   of  an  airplane     C,,       and    C•       that  con- 

version is obtained through the relations 

%  qs 
S' 

= T ^V, 

S * D 
S c °^V 

where  S  is the v;ing area   and c  is the wing refer- 
ence chord.   Note that in all the foregoing 'if    is 
me a s ur e d i n r adi an s . 

Qj? erection of side fo rce for c orrr? re 5 s ibl 11 ty. - It 
is shown in appendix 3 that a first-order correction for 
compressibility is obtained by dividing the side force- 

by \A  -  ^J1,     where  K  is related to the stream ¥ach 

number M and v/nD by the curve of figure 9«   The 
correction is valid only below the critical ¥ach number 
for the propeller. 
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Summarized effeqts  of yaw.- With the  new definitions, 
the  side-force  derivative  for a single-rotating propeller 
is 

°Y ^ qS ' 

k_f(a)   aln 
 — (38) 

ii. 
T       -   A 

+ \0l-t 

and the side-force derivative for a dual-rotating pro- 
peller is 

^ \lr    qS» 

k f(a) (jl1 

1 + Ka Olx 

For  a single-rotating propeller  the   Ditching-moment 
derivative  is 

G   i     = oM/oUr 
•''"M|/ qDS» 

k«.  f(a)  m *s 
1    +   lCrO    (L,     -    A) 

(ixO) 

and for  a dual-rotating propeller the  pitcning-raoment 
derivative  is negligibly small. 

The   side-force derivative may be  corrected for com- 

pressibility by dividing by    yf\ - M    .       The  same  cor- 
rection may be   applied to  the  pitching-moment derivative 
but with less   accuracy. 
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The  quantities  involved  are: 

Spinner factor 
a 

k    = 1 + s r 
I     a  sin  ß0  dx 

(36) 

Sidewash factor 

where 

n1- a2  sin2   ß-,   dx 

v     -  ?   i a > 
1   ~'       /,1 \2 

»\{JX   *   Sin   ß-   ^ 

r   (a)   = 
2(1   +  2a) 2 

Inflow factor 

a = 

1  +  (1  +  2a)- 

_____ 

,/i + 8 ~ - l V rr 

(35) 

q-factor 

f(a)   - 1 
21 (1   -f-   a)    _(1   +   a)   +   fl   +  2a) j 

1   +   (1   +  2a)2 

Solidity  at  0.7 5R 

3;r W0.75R 

(ll;) 

(37) 
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I1  = |7 cz      f    :x  sin   ßn dx (UD 
a   / 

0 

I     = f- c,       /       i-t  cos   ß0  x ax (k2) 
2 a <4 

I,  =1*1     f       H    ^-^x2dx       (1,3) 
^       a     "a   / sin $ 

K - k) fa+ -f) 
A   = 

0(1   +   CFI    ) 
2 

(W 

m = ~^- 2- (1*5) 
2(1  + al_) 

and in  equation  (j6),   for  a nacelle   fineness  ratio  of  6, 
K ~ 0.90   and,   for  a nacelle  fineness   ratio   of   «>,     K ~  1.00. 

The   charts  of figures   6,   7»   1°,   and H   ar© provided 
for determining 2a/rr,   I7,   f(a),   and     f., (a),   respectively. 

Required  accuracy  of     k„,   ka,   and A.-  To   the  degree 

in which  comparison with existing experiments   establishes 
the   accuracy of   the   side-force   formulas   -  about  ±10  per- 
cent  average  error  -  it is   sufficiently accurate   to use 
the mean  values  O.L.  for k     and, for  the  usual-size  spinner 
(xs = 0.l6), I.1I4. for k .   To the same accuracy, the 
terms in  J may be omitted from L,     and lx    may be set 

equal to the average value 3» with the result that 

alp2 
A ~ —d  

1 + 3a 
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Availability of charts of side-force derivative.- 
In reference 13 is presented an extensive series of charts 
computed, from equations (38) to (lu'i) for two conventional 

a>    propellers.   The derivative  C '   is given as a function 
CM - v|/ 

Ji    of V/nD for blade angles ranging from 15° to 60° and 
for solidities from two blades to six blades, with single 
rotation and dual rotation.   In reference lb.  is presented 
a method of extrapolation whereby this set of charts may 
be used for determining  CT,'   for all conventional oro- 

••:   i, 
nellers without  resort   to  the  original  equations   .(3o)   to 
\kk). 

Pi tolling-moment derivative.-  3>y numerical   evaluation 
of  equati'ön"'(U'JT~ ti:e"~/iTcB~iTig'~:norent  of  a  single-rotating 
propeller  in yaw is   found  to  be   of  the  order of  the moment 
produced by  a force  equal   to   the  side   force   acting  at   the 
end  of  a lever  arm equal   to   the propeller radius.        This 
moment  is   .small   and has heretofore  been neglected in air- 
craft  stability  studies.        Tote   that  the effect  is   a  cross- 
coupling between yaw  and pitch. 

The   dual-rotating propeller  develops  no  pitching 
moment. 

'ropeller Subject  to  Angular Velocity  of Pi to v. 

Ratio  dY~ /V„  for angular velocity of pitch.- The 
 b  c   

angular velocity of pitch makes no direct contribution to 
the rotational velocity in the plane of the propeller 
disk V0 .   It is known from Glauert's work (reference 3), 

however-, that pitching gives rise to a side force and to 
a pitching moment.   This sid.e frrce induces a sidewash 
that affects  Vfl,  as in the case of the yawed propeller. 

The chan.se in  V.  is accord.inp.iv the same as the induced 
"   .  • b w " 

part of the total change for yawed motion.   This change 
is obtained by setting  ^ ~ 0  in equation (13a): 

    fn(a) -S-        (I;.6) 
v (1 + a) 2     1K '   TT 

where 

f   (a) = _._^- ~'—r- US) 
1 + f'l + 2a) ^ 
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Ratio    dVq/Va    for angular velocity of pitch.-  The 

direct  increment,   due  to pitching,   in the  axial  velocity 
Va    is     qr  sin   9• 

The induced increment  due  to  the  afore-mentioned 
pitching moment  is,   by  equation  (iS), 

Va l6Mcx 

(1  +  a) 2        v. 
sin 9 

The total increment  d\"a  is the sum of the direct and 
the induced increments.^ Therefore 

dVa _  sin 0 

Va   (1 + a)^ 
(1 + a) 

qDx 

2V 

l 6MCX 
(hi) 

Expressions for Y  and M . - Upon introducing the 

equations (lib) and (h.'J), the equations that result here 
in place of equations(19) and (20) for the propeller In 
vaw are: 

C     2h• WO.75R/   lL }        "J 

1 , 
B» > n dx 

^ 

2'uc   2 i; ID 

r 

•f\(a) 
y. 

c + (1 

^- 

Solution for Y^  and M„ . - By using the abbrevia- 

tions of equations (21), equations (1x3) become 

r v¥ki^"- h-'^^ i^alb.) 
2V 

/ 
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TT0' 

C     £  !   1      TT 
(1 + a) — +  S- 

2V    Tr 

1 
7 
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which are simultaneous linear algebraic equations in Y 
ana "c* The   solution  for    Y„     and .,c is,   after 
s i rrp 1 i fi c at I on, 

Y £5 r 
2V 

+  a)   H 

al. T2a 
rr 

fi(a)      , + -*_ o(Ii   _  A) (1  + al7) 

w S5   (i   +   a)   — 
2V 16 

TT 3\ 

/        fx(a) 

(1+-T-oIll       fl(a, 
1   +     CIT, 8 aA 

1     +    fllÜ    o(T -    .) 

Side-force  derivative     0V'       and   pitching-moment 
 -   q        

derivative     Cm'   • -  Side-force   and pitching-moment  de- 

rivatives   may  he   defined   as   follows: 
-A 

C 
q 

2 

-   (1  +  a) 

1  + 

cl2  - J— 
TT 

-f* 
X *1 

n ( T          _ 
"I A) r.           °^ (1  + ai_) 
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ü2\ 
27/ 

m  ~   p p c •  = 

T (1+~¥-gIl)  f3(a)  A 

where 

Pough approximations may be obtained by omitting the 
induction terms - that is, the terms due to sidewash and 
to inflow asymmetry.   There result 

V  -' - (1 + a) 01.? (i-9) 
... q 

(V  =• - (1 + a) ^3 
-' q 2 

Comparison of angle of yaw with angular velocity of 
pitch to produce same side force.- To the same rough 
approximation a"s equation {i.i.9) , 

<V  c f(a) k al1 

The ratio of i>    to qD/2V  to produce the same sid e 
force is therefore 
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ON 
-I 
Al 

I 

__# = 

CY 

t 

q 
C;D/2V 

(1  + a) *2 
f(a)   k    I, 

d 
ks  Xl 

(50) 

This  ratio  is  of  the  order  of unity. 

Maximum  obtainable   side  force  due   to pitching.-   The 
maximum  side-force   coefficient   due  to  pitching  occurs, 
for  a given blade-angle   setting,   when    qD/2V     is   a 
maximum.       Maximum    qD/2V    in uns tailed  flight  is  de- 
termined  by  the maximum normal  acceleration that  the   air- 
pla^ie  can develop,  which is  determined by the  maximum lift 
coefficient.        The  normal   acceleration is 

an  =  qV 

:rom wnich 

2V       2V2 

At   a given  speed  the maximum normal  acceleration     a 
max 

could be  realized   at   the top  of  an inside  loop.        The 
relation i s 

w ~ ar = Downward lift  + Weight 
&       max 

n c;     P   Tr2 

max 



l+o 

or 

-^=(—-f« + -i-) g (52) 
v2       \~2W/s       vfy 

The  value   of     a /v-    is  greatest  when    V    is  least. 
max' 

If the discussion i's  limited  for  the present  to  the 
minimum speed for level   flight    V .,,,-,, •D stall» 

PCT 

^        Vstall2 

Prom equation  (52), 

"max _ __££_  
V2 V   ,    . _2 

stall 

and therefore,   from equation  (51)* 

2V/ V 2 

•   ' max stall 

A practical upoer limit to  (qD/2V) „   at the '   max 
stalling speed would be afforded by a hypothetical fighter air- 
plane having the following characteristics: 

V8tall = ?5 mph 

= 110 fps 

D = 12 ft 
Then 

52.2 x 12 
<2V/max (HO)2 

= 0.032 



s 
1-3 

III 

By equation (5°) the angle of yaw, in radians, that would 
provide the same side force is approximately 

If a minimum blade angle of 15° at stalling speed is 
assumed, the ratio  Io/ksI-,  is 1.1J for the representative 

Hamilton Standard orooeller 3155-6-   Therefore,  (qD/2V) , s    ;j ,        /max 

would be equivalent in producing side force to an angle 
of yaw 

\|/ ••- -1.13 x 0.032 

-- -O.O36 radian or -2.1° 

The resulting side force would be quite small. 

Many times the preceding value of  CqD/2V)     is 0 - '        max 
obtainable during the spin, which involves wing stalling. 
If the spin is excluded from consideration, therefore, 
the general conclusion to be drawn from the example 
is that  even in an extreme maneuver the side force due 
to rate of pitching is very small  and in all ordinary 
maneuvers this side force is negligible. 

Maximum obtainable oltching moment due to pitch!ng.- 
The preceding data, when applied to "the pitching moment 
due to pitching, indicate  that the maximum obtainable 
pitching moment is of the order of the product of the 
propeller diameter and the maximum obtainable side force 
due to pitching.   The general conclusion about the side 
force implies that the pitching moment due to pitching 
is small even in an extreme maneuver, with the exception 
of the spin, and in all ordinary maneuvers is negligible. 

Forces due to angular velocity of yaw.- Angular 
velocities of yaw attain rn.agnltud.es of the same order as 
angular velocities of pitch.   The forces on a propeller 
due to yawing are, like those due to pitching, negligible 
excent in the spin. 
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PHYSICAL INTERPRETATION OF PROPELLER IN YAW 

Concept of projected side area.- The area projected 
by a propeller blade on a plane through the axis of ro- 
tation and the axis of the blade is 

,-     ,   AR. •, 

/  b sin ß0 dr 

o 
The average area projected by all the blades of a rotating 
propeller on any plane through the axis of rotation is 
the projected side area 

S„ = %    /  b sin ß0 dr ip^/ 

where  B  is the number of blades.   From this relation, 
it can be < 
iDressed  as 
it  can be   established  that  the  product    OL     may  be  ex- 

SP 
oh  = ci    FT (53) 

TT: 

a 
^2 

where     S'   = ~f~    is   the propeller disk area.        Thus    a I- , 

which figures   so  prominently  in  the  expressions  for  the 
side-force  derivative     Cy1   ,     is  proportional   to   the 

V 
projected  side  area of  the propeller.       In  reference  13) 
I,     is  termed the   "side-area index.11 

Effective  fin  area  and  aspect  ratio.-   Inasmuch  as 
D^/S       is  the   aspect  ratio     A    of  the  projected side 
area    S„,     It  is   also  true   that 

c 7       O 

Substitution of  equation  (53)   in the numerator  and  equa- 
tion  (5U)   in tne  denominator  of equation  (39)   gives  for 
a dual-rotating propeller 



-I 
M 
I 

-3 

f(a)   q S P 

ff a)   q  S 
70 

=  k 

k 

1+3 

a 

1  + k. 

A 

as     k   sO.k on  the   average   and. 

IM 8 
.2rr/   A 

/ 
(55) 

i 

2rr 
g- 20.95 

For   comparison,   the   corresponding expression for  an 
actual  fin of  the   same   area  and  aspect  ratio,   at  which 
the  local  dynamic  pressure  is  f(a)q,is   . 

f(a)   q 

I a 

"D i +^ 
A 

(56) 

when the lifting-line form of aspect-ratio correction is 
used.   3y omitting k , which merely accounts for the 
favorable interference between spinner and propeller, 
equation (55) can 1°e  written in the form of equation (56) 
"by introducing an effective aspect ratio 

A 

M 
2TT 

It  follows   that   a dual-rotating propeller in  yaw 
acts  like   a fin  of which  the   area is   the  projected  side 
area  of  the  propeller,   the  effective   aspect  ratio   is 



approximately   two-thirds   the  side-area aspect  ratio,   and 
the  local  dynamic  pressure  is     f(a)     times  the  free- 
stream value.        A. single-rotating propeller may be   shown 
to  act  similarly,   but  the  effective  aspect ratio  is mark- 
edly less  and  is  not  so   simply expressed.        A mean effec- 
tive  aspect ratio for both single-  and dual-rotating 
propellers  is   about  8. 

Effective dynamic  pressure.-  3y  the   definition  of 
a,     the  expression    V(1  + a)     is  the  axial wind velocity 
at  the propeller disk.       Accordingly,     (1  +  a)^q     is  the 
dynamic pressure   at  the propeller disk.       The pressure 
(1  +  a)2q     is  only slightly greater  than   _f(a)q,     the 
effective  dynamic  pressure  of  equation   (^6).       Thus   the 
equivalent  fin described in  the  preceding paragraph may 
with  small  error  be   regarded  as' situated in the  inflow 
at  the  propeller disk  and  subject  to  the  corresponding 
augmented dynamic  pressure. 

Comparison of  side  force  of   single-  and dual-rotating 
propellers.-   it has  been pointed out  in  the  discussion 
accompanying  the  derivation  of    Yc     and    Mc     for  dual- 
rotating propellers   in yaw  that  the   dual-rotating pro- 
peller averages  13 percent  more   side   force  than  the   single- 
rotating propeller  and  that  the  increase   reaches  32  per- 
cent  at  low  blade  angles.        The  detailed  explanation is 
given in   the   same   discussion.        In brief,   dual  rotation 
eliminates  certain  induction  effects   associated with  single- 
rotation;   the  dual-rotating propeller acts   as   if  it has 
a considerably higher  aspect  ratio and  therefore  develops 
more  side  force  for  the   same   solidity. 

Magnitude   of pitching moment.-  It has  been  shown 
that  yaw gives  rise   to   zero pitching moment  for  a dual- 
rotating proneller and  to   a finite pitching moment, given 
by equation  (LLO) ,   for  a   single-rotating propeller.        The 
numerical  evaluation  of  equation  (a.0)   for typical  cases 
shows   that  the  pitching moment  is   of  the  order of  the 
moment  produced by  a force  equal   to  the  side force,   acting 
at  the  end of  a lever arm equal   to   the propeller radius. 
This  cross-coupling between pitch  and yaw is  small,  but 
possibly not  negligible. 
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PROPELLERS IN PITCH 

The results for propellers in yaw may be applied 
H     to propellers In pitch from considerations of symmetry. 
^     The normal-force derivative of a propeller with respect 
i-3     to pitch is equal to the side-force derivative of the 

same propeller with respect to yaw, and the yawing- 
moment derivative of a propeller with respect to pitch 
is equal to the negative of the pitching-moment derivative 
of the same propeller with respect to yaw.   These re- 
lations are invalid when the propeller is in the upwash 
or downwash of a wing.   (See reference 13, p. 12.) 

COMPARISON WITH EXPERIMENT 

Experiments of Bramwell, Reif, and Bryant.- The 
experiments of Bramwell, Reif, and Bryant in 191J4. with a -four- 
blade model propeller in yaw (reference 15) &re worth 
noting because the experimental arrangement was designed 
specifically for the problem.   'the balance was arranged 
to yaw with the propeller and to measure the side force 
directly with respect to body axes.   Tare readings were 
inherently small in comparison with the forces being 
measured.   Tunnel speed was calibrated by comparison of 
thrust curves for the same propeller in the wind tunnel 
and on a whirling arm. 

A  calculated curve of CY'/ty>  which is the same as 

C,r
T   for small values of \}r,  is compared in figure 12 

with the experimental values of reference 15»   There is 
included for further comparison the theoretical curve 
calculated by Misztal (reference 9)-   The curve calcu- 
lated from the formula of the present report appears to 
give somewhat better agreement than that of Misztal but 
the improvement is not conclusive.   The principal objec- 
tion to Misztal's formula remains the labor of its appli- 
cation rather than Its defect in accuracy. 

Experiments of Lesley, Worley, and Moy.- In the ex- 
periments of Lesley, Worley, and Moy reported in 1937 
(reference l6), the nacelle was shielded from the 
air stream, with the result that only forces on the 
propeller blades were communicated to the balances.  A 
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3-foot,   two-blade propeller was  used.       Measurements were 
made  of  six components   of  the   air forces  on  the propeller. 

Calculated curves  of    C   '/•!>  are  compared with the 
experimental  values  of reference  l6 for     ^ = 10°     in 
figure 13.       Note  that  the  original data of reference l6 
were presented therein with respect  to wind axes,   and the 
data have  been  converted to  the  body  axes  of  this  report 
in the presentation  of figure  13. 

Experiments  of Runckel.- The most complete  experi- 
ments  on yawed^ propellers  -  the  only published experi- 
ments  on full-scale  propellers - are those of Runckel   (ref- 
erence 17)•       Runckel  tested single-rotating propellers 
of  two,   three,   four,   and six blades     and a  six-blade 
d.ual-rotating  propeller.        The   diameter was  10 feet.     An 
attempt was made  to correct  for the wind forces on  the 
rather large unshielded nacelle  by subtracting the  forces 
and moments measured with zero yaw from the  corresponding 
forces   and moments measured with yaw at   the   same  value 
of    V/nD. _ "| 

Calculated curves  ofJ|   Cv'/|/,     including  a spinner 

correction,   are   compared f|n figure  llj. with the  faired 
experimental   curves  from «Reference  17  for 10° yaw.       In 
reference  17,   as  in referjhce l6,   the  original  data were 
presented with respect   toMvind axes   and  the   curves  have 
been converted to  the bodff axes  of  this  report  in the 
presentation of figure  llxf"     In figure 15  the unpublished 
experimental   points  for   the  single-rotating  six-blade 
propeller are presented for comparison with the faired 
published curves  as  converted  to body axes. 

Acouraoy.-  From these  several  comparisons  of  the 
theory with experiment  it  appears  that   the   average  dis- 
agreement is   slightly less   than ±10 percent.       This 
accuracy is   of  the   order of  that  obtainable  by  the   vortex 
theory for  the uninclined propeller when the number of 
  I in •    1 1 if!      llj! 11  ,1       1 11   kii 11   »I 1   '1'    11    1     II       " 1    1      11 in 

2 
The propellers of reference 17 were actually tested in 
pitch rather than in yaw but, inasmuch as pitch becomes 
yaw upon a J0°  rotation of the axes, this conversion was 
made to keep the discussion consistent.   In this con- 
nection, a vertical force due to pitch has herein been 
called a side force due to yaw. 



1,7 

blades Is tacitly assumed to be infinite by the omission 
of the Goldstein correction for finite number of blades. 
The same assumption is made in the present analysis. 

OA 

£j CONCLUSIONS 
i 

The foregoing analysis of propellers in yaw and 
propellers siibjected tc an angular velocity of pitcn 
permits the following conclusions? 

1. A propeller in yaw acts like a fin of which the 
area is the projected side area of the propeller, the 
effective aspect ratio is of the order of 3, and the 
effective dynamic pressure is roughly that at the pro- 
peller disk as augmented by  the inflow.   The variation 
of the inflow velocity, for a fixed-pitch propeller, 
accounts for most of the variation of side force with 
advance-diameter ratio. 

2. A dual-rotating propeller develops up to one- 
third more side force than a single-rotating propeller. 

3. A yawed single-rotating propeller experiences a 
pitching moment as well as a side force.   The pitching 
moment is of the order of the moment produced by a force 
equal to the side force, acting at the end of a lever 
arm equal to the propeller radius.   This cross-coupling 
between pitch and yaw is snail, but possibly not negligible 

I;.  Propeller forces due to an angular velocity of 
pitch or yaw are negligibly small for the angular ve- 
locities that may be realized in maneuvers, with the ex- 
ception of the snin. 

Langley Memorial Aeronautical Laboratory, 
national Advisory Committee for Aeronautics, 

Lang1ey Field, Va. 
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APPENDIX  A 

DERIVATION OF  3TDEWAS1? FACTOR 

If  the   assumption  that  the   side   force  is  uniformly 
distributed over  the  prop el], er disk is   abandoned,   it  is 
necessary  to  proceed differently beyond equations   (5}   in 
deriving    Yc.        For   the   purpose  of   obtaining  an effective 
average   induced  sidewash,   it  is nermissible   to  neglect 

dVn 
the   small  term    B'   —-    in equation  (5)?   which crives 

v 

6(dFP)   = 
(1   +  a)' 

k \D 0.75?. 

d.Vc 
——  ^iA<   dx 
Vo 

(A-l) 

An equivalent differential relation for the time average 
side force, divided by  PV D , on  an element of disk 
area x d.0 dx may be substituted for the summation of 
equation (7)> as 

62v 
—ZT  dx d9 = B6(dF.) sine SiL 
GX' CD ° 21 

:A-2) 

dVG 
The fraction —-- has been shown to be given by 

Va 

dVn 

Vr 
= (\J/ - e ' ) sin (13)' 

a 

where  e '  is the local induced angle of sidevash at the 
propeller disk.   Combining equations (A-l), (A-2), and (1;), 
using  A' 

constant over the disk gives 

dY„  °l  o'   (1 + a)^ sin2 8 Z'1 

c   sin ß , and assuming that  (1 + a)^  is 
a 

d9 8TT 
(\!/ - c1 ) ti sin ß d; ( /:_^' 

f TT 
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I 
i-3 

from which 

Y. 
c7   a'U  +  a)' _ _±a  

8 
Cf     [i sin 

2TT   nl vz 
ßo  dx 

€'   sin^ G ix sin  ß    dx  d8i 

An effective   average   value  of     e'     is   obtained by defining 

Yc  = 
. Pi,.,. 

'(1  +  a) 2 

ö 
M   - *€') ti  sin  ßo  dx 

x. 

'(A-U) 

from which the effective average angle of sidewash is 

1 P2Tr P1 ? — I        I      e' sin^ 6 |x sin ß0 dx d£ 

e' - (A-5) 

ix sin ß0 dx 

In this appendix the induced sidewash angle  e'  is 
the local value at the disk element  x dx dB,  not the 
average value used in the main text; o     is composed of 
one part due to the side force  e'   and one part due to 

v 

the cross-wind comoonent of the thrust  £'„•   The ef- 

fective averages are designated T^  and  e"< .   Then 
T 

equations of the form of equation (A~5) hold between 

T 
er  and e'   and between e'  and e' . 
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The evaluation of  e'   follows:  The product 
Y 

VQ e'     sin G,  hereinafter  called    v..    ,   is   a velocity ay y -i7- 

component parallel   to    Vn     but not  necessarily in  the 

same sense, In order to evaluate  v. for use in 
v 

equation (A-5), it is useful to define a quantity  f 

such that dx d6  is the time average of the 
x dx 08 

increment due to yaw of the peripheral force on an element 
of disk area x dx dy•   taking the simplifying assump- 
tion that the peripheral force on an element of the pro- 
peller disk affects only the air flowing through that 
element and equating the peripheral force to the rate of 
change of peripheral momentum which this force produces 
far behind the propeller leads to the relation 

62f 
\ 

'v„ 

x ÖXÖ8 
x  dx d9  =  pVa  1* dr d8   2v^     + pY I-^ r dr  d8 

V / 
— 2v_ 

(see  derivation  of  equation   (12)). or 

v 8,. 

'a 

62f, 
x  6x 68 

1 + 
2~ 

v9 
o2f„ 

*  x 6x 68 
va '" 

(1  +   a)2 
"i 

1      -f 

(1   +  2s)2 

(A-6) 
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whe re 

f    = 
crs c        pv2D2 

t—i 
cu 
Ji Va = V(l  +  a) 

Vs   = V(l  + 2a) 

An  alternative  form of  equation   (A-2)   is 

? ö2fn 
d  I    ~  «•-— sin  G  x dx d.9 c      x ex de 

or 

ö2y0 d2x 

x dx   09       x  ox  09 
sin 9 

In equation  (A-J)   the  fact  that      v ,     vchi ch  defends  on 
9,     is   small  compared  with    '!/    allows   the  approximate 
relation 

6YC ? 
"T7~ = k  sin^ 9 Ob 

where     k    is   a  constant.      Integration  establishes   the 
value  of    k     as    Y^/v;   therefore 

bYn       Yn   sin2 9 

dYn 
A2v ^-^  sin^- 9 o s ^ ox 

OX   0 9 TT 
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By  equation  ( A-I4.) , 

ÖX 

(I  sin  ßr 

H   sin  ßn  dx 
xr 

Therefore 

ila_ - v    üJL 
61 09        J°      -1 

x. 

20. sin'- 6 

3in  ß0  dx 

62f 

x öx  00 

sin 9 

7T 

^c•^ sin  ßo 

A x /      jj,  sin  p0  dx 
1 x i/x 

(A-7) 

Equations   (A-6)   and   (A-7)   establish  the   value   of 
Vg   /va ,     which can be   substituted for     e!     sin 9     in 

-7 _ _ 
equation  (A-5)   as   applied to     €'       in place  of     <?' . 

This  value  is 

v, J-v 2 sin 9 yn   ix  sin  ß0 

(1   +   a) 
^2 1   + 

(1   + 2a)- 

1       TT ^1 

V p.   sm  ß„   ox 

Therefore, substitution in   (A-5)   as   applied  to     £'     gives 

42TT/,1 

2Y, r/s. 
vo« 

n2 e  ilLfiiJoi! dx de 
X 

Y       rr2   (1  +  a)2 
1  + 

(1  + 2a) 

\2 
^1  sin  ß0  dx! 
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The integration with respect to  9  results in 

»  = 

2 „ 
TT -C 

(1 + a)' 1 + 

(1 + 2a)' 

(jj. sin ßn)' dx 
x 

(A-8) 

The  part  of     e'     due   to    Yc     in  equation  (12),  which 
is based  on  the   assumption of uniform distribution  of 
thrust   and  side   force  over  the  propeller disk,   differs 
from the  expression for     e-'v    given  by equation   (A-3) 
only in the  absence  of  the   factor 

/        (a-sin  ßD)l 
dx 

kl  = 
x. 

(A-9) 

•ft  sin  p    d: 

which is equation (jii).   An analysis for  e*   similar 

to that for F'y  results in a value that does not 
appreciably differ from the part of  e'  due to Tn     in 
equation (12); that is, 

TT Tc ^ 

•T 

1 + a)' 1 + 
(1 + 2a)2 

Accordingly,   the   effective^  average   induced  angle   of   side- 
wash     e1 ,     which  equals     e'     + 7'   ,     is  given  by 

€ ' 

~  (TJf   +  kxYc) 

(1   +   a)' 1   + 
1  + 2a) 2 
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which is equation (33).   If e'  is inserted for  e' 
in equation (12), the factor  f1(a)/8 in equations (2;) 

f-! (a) " 
and (25) is replaced by — k, . 

,Q    1 Ö 
This is the quantity 

that has been called the sidewash factor k, 
value of k  inserted, 

With the 

I 
/-)! ( • n ß0)' dx 

x 

ix sin ß0 dx) 
y 

(35) 
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APPENDIX B 

CORRECTION FOR  COMPRESSIBILITY 

H 
^ The  side-force derivative     Cv'        is  very nearly 

proportional  to  the  integral 

In   = \ c,    /     a sin  ßr_   dx (la) 
J0.2 

To a first approximation the effect of compressibility is 

c      //{  -  iu 2,  where accounted  lor  oy  reolacin^     c,       bv 
7 / »      x fc a/ 

M  is the resultant speed of the blade section at  x 

divided by the speed of sound in the free stream.   If 
the subscript o' is used., to designate quantities corrected 
for compressibility effects, 

.1 
T - 1-n i      jJ- sin ßn dx xi - k cz    /     —T==F (B ^ 

0.2 

A mean  effective  "ffach number    ¥.p     defined by  the relation 

(E-2) 

"e 

T. 

1     "" 
T r:    _1  , 

I 0 

would also approximately satisfy the relation 

(V 
\ ,/1     -   M   t- V-        " e 

(3-5) 

Equation (B-J) constitutes the desired correction of the 
side-force derivative for compressibility effects. 
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The  determination  of     Me    oroceeds   as   follows: 

By equations   (J4.I) ,   (B-l),   and  (B-2), 

A1 

1 

/      [i  sin   Pb.dx 

^0.2 x/l   -  M?2 
— 

/     ;j,  sin   ßQ dx 

^0.2 

v4  -   Me
2 

For determining  the  ratio.:     IV^/M    it  is   sufficiently 

accurate   to put 

(B-1+) 
1 M  2 

~1   +   ^_ 

-./I   -   V  2 
vx       ,Vie 

2 

i 

1 e 1   +   "^ 

AA   -  Mx
2 2 

(B-5) 

although  approximation     (3-ij.)   will   not  be   applied to   ths 
final  equation   (B-J).        Then 

M 2   _    °0.2 
M ^  ^t  sin  ßn£x "X 

Z*1 
/ [x  sin   ßQ dx 

if r.    p 

(3-6) 

By reference  to  figures  1   and 2,   if  inflow and rotation 
are  neglected, 



J i 

0\ 
H 
CM 

2   _ V, 

W- 

5in2 0 

•An- 0 

i +  l4)d (3-7) 

where 

a speed  of   sound In free  stream 

M iree-stream Mach number 

J - — 
nD 

r 
Jv  = — 

R 

The   approximations     u. •=  constant   and     p^=  gf    are 
likewise   adequate   for  the   present purpose;   therefore,   as 

sin  )6 rf ~ 1 

V i     T / \  J/ 

equations   (B-6)   and   (B-7)   give 

,o 

/»« 

\ '-•<- /' 

. y/1   +[~ dx 

^.2^TMf 
(3-8) 
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Upon integration 

V 2 lege -J-lJLli^-- 
Ö.2 + i/o.Oli. + ?/ 

where 

TT 

_ VnD 
IT 

Equation (B-9) provides thö desired relation between the 
effective I.'ach number. },10     <T.nd the stream T*ach number M 
for use in equation (B-jJ.   A grsph of the variation of. 
Me/M with V/nD, computed from equation (B~9), is given 
in figure 9-   Note that, in spite of the rapid rise of 
Me/M with decreasing V/nD,  for constant-speed propeller 
Operation T'  decreases. 

It may be noted that equations (3-1;.) and (B~5) are 
parabolic approximations to the Glauert compressibility 
factor l/\A   ^~yp-.        Equations (3-6) to (3-9) are, 
however, independent of the constants of the parabolic 
representation. Thus the validity of these equations 
is not restricted to the case of a variation of  c 

la 
with "(ach number that follows the Glauert relation; 
the equations are valid for any variation that may be 
approximated in the 'region of interest by a parabola, 
such as 

c,   = (A + BM2) c 
"a la c tt 

where A and 3 are constants. 

The compressibility correction ceases to anply at 
.Mash numbers above the critical Mach number for the 
propeller. 
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Figure /.- Vector relations at a blade element. 

, - - Re s t//to fit   wind 
at prop e//er including 
inflow ond s/dewosh ~'/„ 

•r      -Zi, 

xla/   velocity     includ 
-ing~inflow,    =Va + dV9 

- —Side-w'md   veto cify    in - 
eluding   sidewash, 

Component of side  wind 
normal for^/a (]p -6') 
sin G =dVg 

Figure 2.-    Vector re/at ions  for prope/isr in yaw. 
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NACA Figs. I, A 

Y'°$tS}y 

Ve/ocity 1/   outside 
the slipstream 

A// air   ve ioc'ifi'es   measured 
re/otii/e  to propeller hub. 

Y 

Figure   3. -    Vector  re Jot ions   pertaining   to  the 
side wash   of a p rep e Her  in yaw. 

/ 
/ 

Figure  -f.- F/ow /nduced by  the  si de. wise,   mot/on 
of an infinite   cylinder in a fluid    initially   at 
rest. 
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F/cjc/re   S-   Perspective  view  of three -cff'mensiohal 
graph of the, assumed incremental inflow, 

Ftqvre 8.—  Effect of  spinner   on  the 
component of the flow  in the plane of the 
propel/en   cf/sk. 
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Figure 13.- Comparison of calculated a"d experimental values H of Cy i/^. for 
two-blade raod^l propeller. Curves are terminated, except for 

9 - 16.6°, at point where obvious stalling of blades occurs, ^experimental 
data fro:Vi reference 18 and converted from v?ind ar.es to body axes, '<\l -  10°. 
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